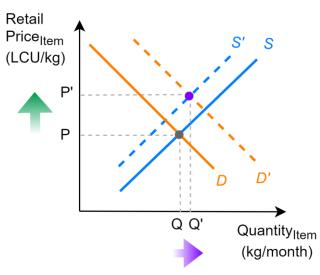


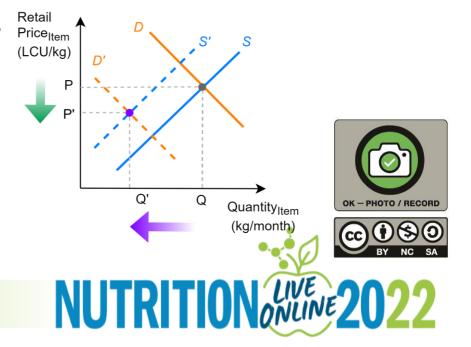
Extreme Weather Events Differentially Impact Retail Food Prices: Evidence from Early Warning Systems (OR03-01-22)

Aishwarya Venkat*, William A. Masters, Elena N. Naumova Friedman School of Nutrition Science and Policy, Tufts University

American Society for Nutrition Excellence in Nutrition Research and Practice Where the Best in Science & Health Meet
June 14-16, 2022 | #NutritionLiveOnline

Disclosures


No conflicts to disclose


Motivation

- This paper addresses
 - resilience to extreme weather shocks
 - in retail food prices
 - -- affecting real income and welfare
 - for all food groups
 - -- with different nutritional attributes and market structures
- Shocks have an ambiguous effect:
 - lower supply and higher costs, but also
 - lower demand that would reduce price
- We only observe <u>net effect</u>

Case 1: Price rise due to higher supply costs compounded by higher demand

Case 2: Price decline due to lower demand offsetting higher supply costs

Background

- Increased climate variability and greater frequency of extreme weather events under climate change (IPCC, 2021)
- Majority (>73%) of research on climate shocks in the food system focus on production shocks (Davis et al, 2021; n=325)
 - Strong emphasis on staple grains and cereals (47%)
- Emerging evidence from global and national monitoring systems post Covid-19 (Bai et al., 2021; Narayanan & Saha, 2021)
- Early warning systems collect retail price data for food security monitoring; underutilized in price and climate analyses (Cedrez et al., 2020; Brown and Kshirsagar, 2015)

NUTRI

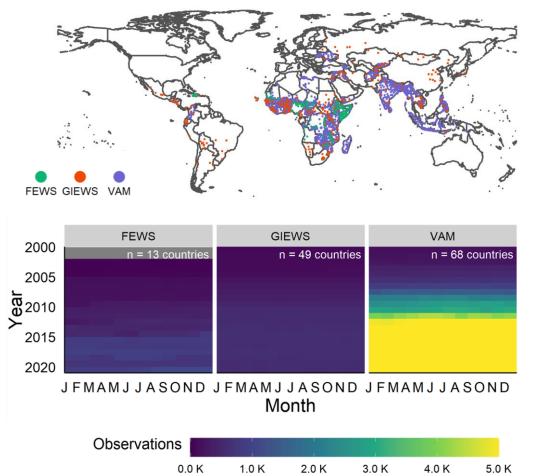
Data Processing

- Data compilation from three early warning systems (FAO GIEWS, USAID FEWSNET, WFP VAM)
- Inflation adjustment to June 2017 using IMF and FAO monthly consumer price indices for food items
- 2017 local currencies converted to 2017 USD using WB purchasing power parity for private consumption
 - Outcome 1: 2017 USD/kg
- Each food item matched to USDA Standard Reference 28 or West Africa Food Composition Table
 - Outcome 2: 2017 USD/1000 kCal

NUTRIT

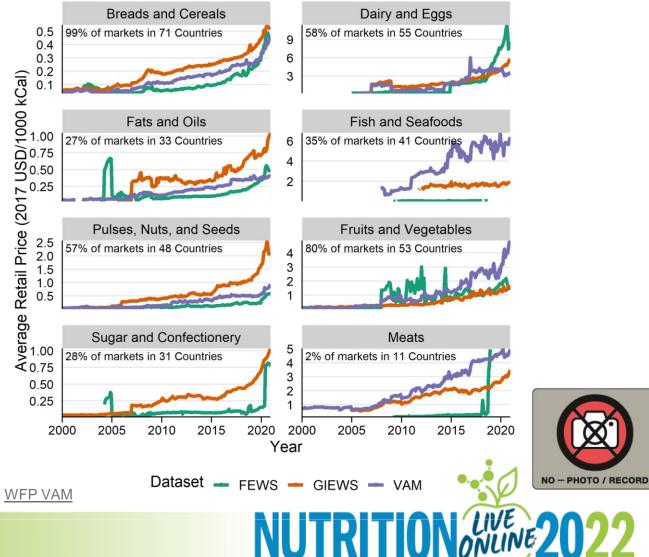
Regression Specification

$$P_{ijmy} = \beta_0 + \beta_1 Extreme \ Event_{jmy} + \beta_2 FG_i + \beta_3 (FG_i * Extreme \ Event_{jmy}) + \beta_4 E_{jmy} + \beta_5 F_{imy} + \gamma_{jy} + \lambda_{my} + \theta_{jy} + \tau_i + \varepsilon$$


The subscript *i* refers to food item, *j* refers to market location, *m* refers to month, and *y* refers to year of price observation

NUTRIT

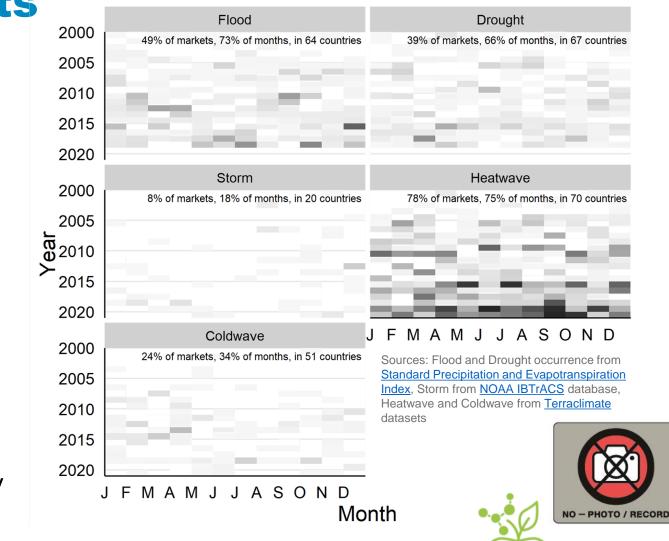
- P_{ijmy}: In(Price per kg), In(Price per 1000 kCal)
- *Extreme Event*: occurrence of flood, drought, heatwave, coldwave, or storm during month of observation
- *FG_i* : one of eight food groups with breads and cereals as reference category
- *E_{jmy}* : vector of time-varying factors including mean temperature (deg C), precipitation (mm), and interaction of temperature and precipitation
- F_{imy} : FAO commodity group price index for food group corresponding to *i*
- Fixed Effects: market location (γ_j), market-month (δ_{jm}), market-year (θ_{jy}), item (τ_i)


Dataset Summary

Sources: Retail prices are reported by FAO GIEWS, USAID FEWS, and WFP VAM

June 14-16, 2022 | #NutritionLiveOnline

Total n = 1,346,513 in 2,321 markets in 71 countries



50 100 150 200

Extreme weather events

• Data Sources

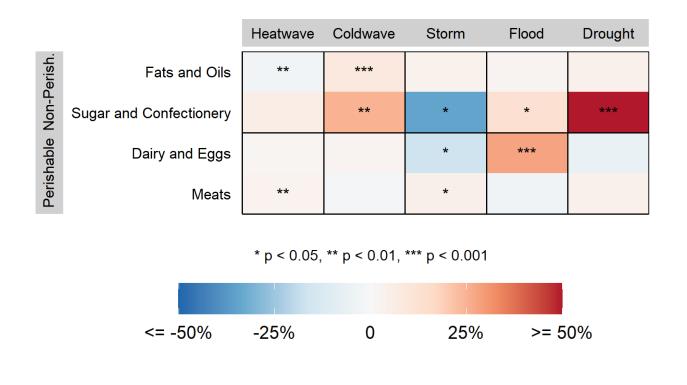
- Floods and Droughts: Standardized Precipitation and Evapotranspiration Index
- · Heatwaves and Coldwaves: Terraclimate
- Storms (windspeeds): NOAA IBTraCS database
- Event definitions
 - Flood = 1 if 1-month SPEI > 1.5
 - Drought = 1 if 6-month SPEI <= -1.5
 - Heatwave if Tmax anomaly >= 2
 - Coldwave if Tmin anomaly <= -2
 - Storm = 1 if at least Category 2 (windspeeds of 43 m/s) was observed within 200 km vicinity of market
- Climate shocks are spatially and temporally heterogenous

Main Effect

		Heatwave	Coldwave	Storm	Flood	Drought	
Non-Perish.	Fats and Oils	***	***		*	**	
	Pulses, Nuts, and Seeds	*	**	***		***	
	Sugar and Confectionery		*	*		***	
Perishable	Dairy and Eggs			***	***	*	
	Fish and Seafoods		**		**		
	Fruits and Vegetables			***	**	***	
Ъ	Meats					***	
* p < 0.05, ** p < 0.01, *** p < 0.001							
<= -50%		-25%	0	25%	>= 500	>= 50%	

- Fruits and Vegetables
 - Relative 26%[†] during Storm
 - Relative 20%[†] during Drought

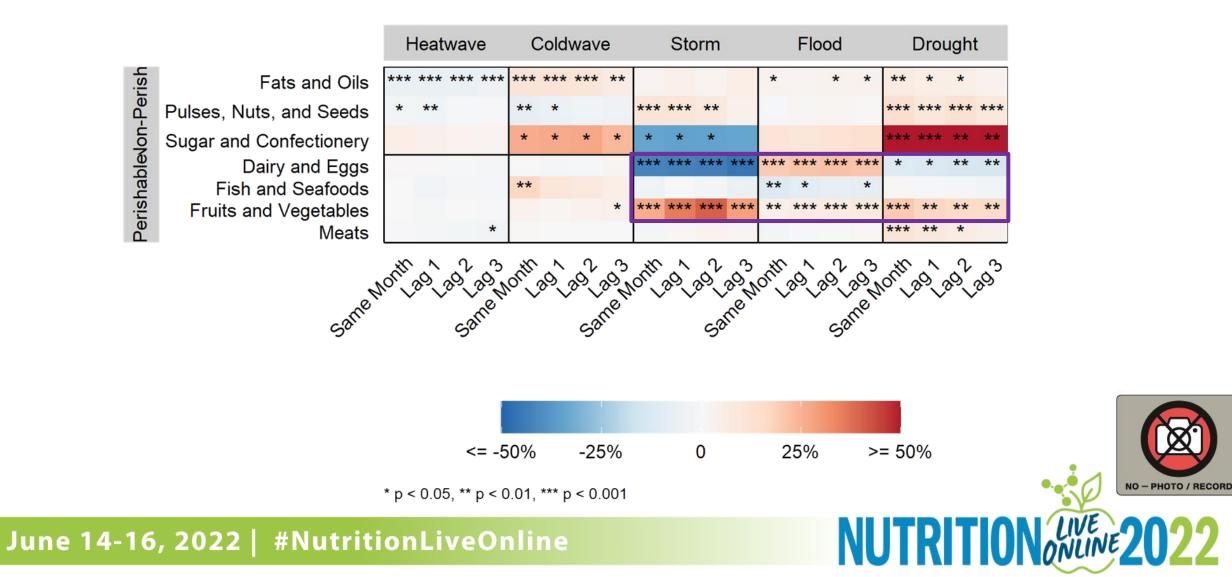
Meat


- Relative 11%[↑] during Drought
- Dairy and Eggs
 - Relative 42%↓ during Storm
 - Relative 20%[†] during Flood
- Oils and Fats
 - Relative 11%[†] during Coldwave
- Pulses, Nuts, and Seeds
 - Relative 14%[↑] during Drought
- Sugars and Confectionery
 - Relative 50%[†] during Drought
 - Relative 26%[†] during Coldwave

NUTRITIC

Relative 34% during Storms

Main Effect: Controlling for World Prices



- FAO Commodity Price Index not available for Fruits and Vegetables and Pulses, Nuts, and Seeds
- Inclusion sharpens observed effect
- Dairy and Eggs
 - Relative 17% during Storms (previously 42%)
 - Relative 28%[↑] during Floods (previously 20%)
- Fats and Oils
 - Relative 8%[↑] following Coldwaves (previously 11%)
- Sugars and Confectionery
 - Relative 52%[†] after Drought
 - Relative 25%[↑] after Flood
 - Relative 34%↓ after Storm

NUTRITIO

Persistence Effect

- Food groups respond differently to different extreme events
- Type and mechanism of extreme event affects supply and demand for food groups
- Results can inform interventions to make certain food groups more affordable and accessible to facilitate healthy diets
- Results can inform climate adaptation and mitigation policies and programs

- Market characteristics: rural/urban, distance, travel time, nighttime lights
- Temporal domain of compound/complex events
 - Droughts unfold over years, floods unfold over weeks
- Spatial scale of impact— GPS point vs. area
- Role of violence

References

- IPCC. (2021). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
- Bai, Y.; Alemu, R.; Block, S.A.; Headey, D.; Masters, W.A. Cost and affordability of nutritious diets at retail prices: Evidence from 177 countries. Food Policy 2021, 99, 101983, doi:10.1016/j.foodpol.2020.101983.
- Brown, M. E., & Kshirsagar, V. (2015). Weather and international price shocks on food prices in the developing world. *Global Environmental Change, 35*, 31-40. doi:10.1016/j.gloenvcha.2015.08.003
- Cedrez, C. B., Chamberlin, J., & Hijmans, R. J. (2020). Seasonal, annual, and spatial variation in cereal prices in Sub-Saharan Africa. *Glob Food Sec, 26*, 100438. doi:10.1016/j.gfs.2020.100438
- Herforth, A.; Bai, Y.; Venkat, A.; Mahrt, K.; Ebel, A.; Masters, W.A. Cost and affordability of healthy diets across and within countries: Background paper for The State of Food Security and Nutrition in the World 2020; FAO Agricultural Development Economics Technical Study No. 9. Rome, FAO: 2020.
- Narayanan, S.; Saha, S. Urban food markets and the COVID-19 lockdown in India. Global Food Security 2021, 29, doi:10.1016/j.gfs.2021.100515.

Thank you! Questions?

Aishwarya Venkat

William A. Masters

Aishwarya.Venkat@tufts.edu William.Masters@tufts.edu

This work is part of the Food Prices for Nutrition project at Tufts University funded as INV-016158 by the Bill & Melinda Gates Foundation and the UK FCDO.

Food Prices for
NutritionBILL& MELINDA
GATES foundation

Foreign, Commonwealth & Development Office

NUTRITION

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy